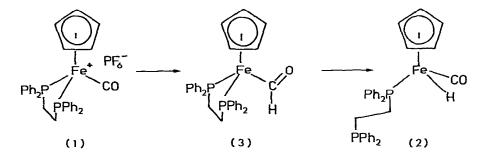
Preliminary communication

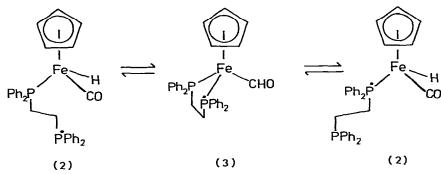
EVIDENCE FOR THE IRON FORMYL $(\eta^5-C_5H_5)Fe(Ph_2PCH_2CH_2PPh_2)(CHO)$

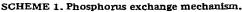
STEPHEN G. DAVIES* and STEPHEN J. SIMPSON

The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY (Great Britain) (Received September 14th, 1982)

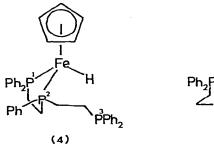

Summary

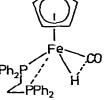
Evidence for $(\eta^5 - C_5H_5)Fe(Ph_2PCH_2CH_2PPh_2)(CHO)$ as an intermediate in the reduction of $[(\eta^5 - C_5H_5)Fe(Ph_2PCH_2CH_2PPh_2)CO]PF_6$ to $(\eta^5 - C_5H_5)Fe(CO)H-(Ph_2PCH_2CH_2PPh_2)$ and for a metal-carbonyl hydride-formyl equilibrium is described.


The mechanisms of the reduction and reductive polymerisation of carbon monoxide continue to attract a great deal of attention [1]. An essential feature of many of the proposed mechanisms is the equilibrium between a metal carbonyl hydride and a metal formyl species. No examples of such an equilibrium have to our knowledge been demonstrated. We recently reported that lithium aluminium hydride reduction of cation 1 leads to the formation of the iron hydride 2. Deuteration studies indicated that hydride addition to 1 proceeded either by direct attack on the metal or via initial attack on the carbonyl ligand followed by hydrogen migration from the formyl thus produced to the metal [2]. We describe here evidence supporting the formation of the iron formyl 3.


LiAlH₄ or Li(Et₃BH) were added to solutions of cation 1 in tetrahydrofurand₈ at -78° C. These solutions were monitored by ¹H NMR spectroscopy as the temperature was slowly raised. Between -70 and -50° C both solutions developed a resonance at δ 11.53 ppm characteristic of a metal formyl proton [3]. Above -50° C the formyl rapidly disappeared. Work-up led to the isolation of 2 as the sole product strongly supporting the hypothesis of the formyl species 3 being an intermediate in these reductions.

The formation of 2 via the formyl 3 suggested the possibility that these two compounds might be in equilibrium in solution at room temperature. Such an equilibrium is considered to be an essential feature of Fischer-Tropsch and related reactions. A ³¹P NMR saturation transfer experiment in which one of the phosphorus atoms of the carbonyl hydride 2 was saturated and completely in-




verted by means of a DANTE sequence [4] clearly demonstrated that the two phosphorus atoms in 2 were rapidly equilibrating ($k \ 0.24 \ s^{-1}$; $\Delta G^{\ddagger}_{297}$ 18 kcal mol⁻¹) with each other but not with free diphos. No exchange of phosphorus atoms could be detected in (η^5 -C₅H₅)Fe[PhP(CH₂CH₂PPh₂)₂]H (4) [5]. Exchange via the formyl 3 is the only possible mechanism for 2 that is unavailable to 4 (Scheme 1).

The P-P coupling constants observed in the hydride 4 are $J(P^1P^2)$ 28 and $J(P^2P^3)$ 35 Hz. These are consistent with the expected thermodynamically most stable *anti* conformation being adopted by P² and P³ (dihedral angle 180°) while the dihedral angle between P² and P³ will be 25-50° [6]. In contrast for hydride 2 the P-P coupling constant is close to zero implying that in (η^5 -C₅H₅)-Fe(CO)H(Ph₂PCH₂CH₂PPh₂) the dihedral angle in the bis-phosphine ligand is approximately 90°. The thermodynamic disadvantage inherent in such a conformation is presumably compensated for by a metal-phosphorus interaction indicating that 5 is a better representation of the structure than 2.

Acknowledgement

We thank the British Petroleum Company Limited for a Fellowship (to SJS).

References

- 1 E.L. Muetterties and J. Stein, Chem. Rev., 79 (1979) 479; W.A. Herrmann, Angew. Chem. Int. Edn., 21 (1982) 117; J.R. Blackborrow, R.J. Daroda and G. Wilkinson, Coord. Chem. Rev., 43 (1982) 17. S.G. Davies, J. Hibberd, S.J. Simpson and O. Watts, J. Organometal. Chem., 238 (1982) C7.
- 2
- W. Tam, G-Y. Lin and J.A. Gladysz, Organometallics, 1 (1982) 525. 3
- 4 G.A. Morris and R. Freeman, J. Magn. Res., 29 (1978) 433.
- 5 S.G. Davies, H. Felkin and O. Watts, J. Chem. Soc. Chem. Commun., (1980) 159.
- 6 P.E. Riley, C.E. Capshew, R. Pettit and R.E. Davis, Inorg. Chem., 17 (1978) 408.